3.1362 \(\int \frac {\sqrt {\cos (c+d x)} (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=208 \[ \frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 a B \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b B \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[Out]

2*a*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((
b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*b*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(
1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d
*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1
/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.90, antiderivative size = 208, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {4265, 4072, 4037, 3854, 3858, 2663, 2661, 3859, 2807, 2805, 3856, 2655, 2653} \[ \frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 a B \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b B \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*a*B*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a
+ b*Sec[c + d*x]]) + (2*b*B*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(d*S
qrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sq
rt[a + b*Sec[c + d*x]])/(d*Sqrt[(b + a*Cos[c + d*x])/(a + b)])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3854

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[a, Int[S
qrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4037

Int[(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)
*(x_)]*(d_.)], x_Symbol] :> Dist[B/d, Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]], x], x] + Dist[A, Int[
Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0]
&& NeQ[a^2 - b^2, 0]

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4265

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)} \left (-a b B+b (A b+a B)+b^2 B \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{b^2}\\ &=\left (A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx+\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \, dx\\ &=\left (a B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\left (b B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\left (A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{\sqrt {b+a \cos (c+d x)}}\\ &=\frac {\left (a B \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (b B \sqrt {b+a \cos (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{\sqrt {\frac {b+a \cos (c+d x)}{a+b}}}\\ &=\frac {2 A \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {\left (a B \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (b B \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}\\ &=\frac {2 a B \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 b B \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 29.62, size = 25325, normalized size = 121.75 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],
x]

[Out]

Result too large to show

________________________________________________________________________________________

fricas [F]  time = 2.90, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fr
icas")

[Out]

integral((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B b \sec \left (d x + c\right )^{2} + A a + {\left (B a + A b\right )} \sec \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="gi
ac")

[Out]

integrate((B*b*sec(d*x + c)^2 + A*a + (B*a + A*b)*sec(d*x + c))*sqrt(cos(d*x + c))/sqrt(b*sec(d*x + c) + a), x
)

________________________________________________________________________________________

maple [C]  time = 3.75, size = 2301, normalized size = 11.06 \[ \text {Expression too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

2/d*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(3/
2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a-A*((a-b)/(a+b))
^(1/2)*cos(d*x+c)^2*a+A*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a-A*((a-b)/(a+b))^(1/2)*cos(d*x+c)*b+A*((a-b)/(a+b))^(1
/2)*b-A*(1/(1+cos(d*x+c)))^(3/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b
)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*b-A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(
1/(1+cos(d*x+c)))^(3/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x
+c)*a-4*B*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(1+c
os(d*x+c)))^(3/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)*sin(d*x+c)*b+2*B*(1/(1+cos(d*x+c)))
^(3/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),
(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*sin(d*x+c)*b-A*(1/(1+cos(d*x+c)))^(3/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b
))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c
)*b-2*B*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(1+cos
(d*x+c)))^(3/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)^2*sin(d*x+c)*b+B*(1/(1+cos(d*x+c)))^(
3/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-
(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*b-2*A*(1/(1+cos(d*x+c)))^(3/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*sin(d*x+c
)*b+2*A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(3/2)*EllipticF((-1+cos(d*x+c))*((a-b
)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a-2*A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*(1/(1+cos(d*x+c)))^(3/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(
1/2))*sin(d*x+c)*cos(d*x+c)*a+2*A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(3/2)*Ellip
ticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b-2*B*((b+a*co
s(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(3/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/s
in(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a+A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+
cos(d*x+c)))^(3/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*b
-B*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(3/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+
b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*a+A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+
cos(d*x+c)))^(3/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*c
os(d*x+c)^2*a-A*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(3/2)*EllipticE((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*a+A*((b+a*cos(d*x+c))/(1+cos(d
*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(3/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/
(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*b-B*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(3/
2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*a-2*
B*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(1+cos(d*x+c
)))^(3/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*b+B*(1/(1+cos(d*x+c)))^(3/2)*((b+a*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))
*sin(d*x+c)*b)*cos(d*x+c)^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/((a-b)/(a+b))^(1/2)/(b+a*cos(d*x+c))/sin(d
*x+c)^5

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B b \sec \left (d x + c\right )^{2} + A a + {\left (B a + A b\right )} \sec \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="ma
xima")

[Out]

integrate((B*b*sec(d*x + c)^2 + A*a + (B*a + A*b)*sec(d*x + c))*sqrt(cos(d*x + c))/sqrt(b*sec(d*x + c) + a), x
)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A\,a+\frac {A\,b+B\,a}{\cos \left (c+d\,x\right )}+\frac {B\,b}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(1/2)*(A*a + (A*b + B*a)/cos(c + d*x) + (B*b)/cos(c + d*x)^2))/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^(1/2)*(A*a + (A*b + B*a)/cos(c + d*x) + (B*b)/cos(c + d*x)^2))/(a + b/cos(c + d*x))^(1/2), x
)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \sqrt {\cos {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(a + b*sec(c + d*x))*sqrt(cos(c + d*x)), x)

________________________________________________________________________________________